

CII National Award in Excellence in Energy Management 2023

Tata Motors Limited, Pantnagar

Team Members : Mr. Mohammed Iliyas Ahmed, General Manager Mr. Manjit Singh, Deputy General Manager Mr. Samarendra Patro, Energy Cell

Copyright, Confidential, Tata Motors Limited

More than 100+ Variants in Production

MANUFACTURING PROCESS FLOW

TATA MOTORS Connecting Aspirations

© Copyright, Confidential, Tata Motors Limited

3

TML Pantnagar has achieved a SEC of 206 kWh/Eq.Veh against a target of 221 kWh/Eq.Veh. Set after taking into consideration all the new loads and new products added to the portfolio and operation changes done because of change in product mix. Also, Fuel consumption reduced by 7% from last year despite the additional heat requirement because of product mix.

© Copyright, Confidential, Tata Motors Limited

Copyright, Confidential, Tata Motors Limited

206

TML Pantnagar has performed best among TML companies who have in-house painting process.

TATA MOTORS

Connecting Aspirations

We have rescheduled our flexible loads to Non-Working days in order to maximize the usage of Renewable Energy in our quest to achieve 100% Renewable Energy

TATA MOTORS Connecting Aspirations

Plant Level Benchmarking (National & International)

TML Pantnagar is Second best industry benchmark with fastest improving SEC year on year better than its competitors, however, accurate benchmarking can't be done due to different processes & size of product (UVs).

Copyright, Confidential, Tata Motors Limited

4

Process Level Benchmarking: Painting (Significant process)

Organization	Power (kWh/ Veh)	Production / day	Painting technology / Process
Maruti - Manesar new plant	68	1400	3C1B (03 coat 1 base)
Mahindra & Mahindra - Chakan	200	500	3C2B & 3C1B
Hyundai Plant 1	140	600	NA
Hyundai Plant 2	170	400	NA
TML – K block Pune	160	250	3C2B
TML Pantnagar	83.9 (70.4 best achieved)	550 (800 nos)	3C1B

TML Pantnagar achieved benchmark level of 70.4kWh/ Veh. at production level of 800 nos/day.

Process Level Benchmarking: Assembly process (National)

SanandMahindraTML PantnagarMaruti GurgaonModels - Tata Tiago, TigorModels- Bolero (220/ Shift)Production- 590Models- SwiftAverage Power Consumption - 42 kWh/ VehicleAverage Power Consumption - 21 kWh/ VehicleProduction- 590Models- SwiftIn winter- 33kWh/ VehicleAverage Power ConsumptionPower Consumption 13.6 kWh/ VehicleAverage Power Consumption 13.6 kWh/ Vehicle				
Models – Tata Tiago, TigorModels- Bolero (220/ Shift)Production- 590Models- SwiftAverage Power Consumption - 42 kWh/ VehicleAverage Power Consumption - 21 kWh/ VehicleProduction- 590Average Power Consumption- 13.6 kWh/ VehicleAverage Power Consumption- 09kWh/ Vehicle	Sanand	Mahindra	TML Pantnagar	Maruti Gurgaon
	Models – Tata Tiago, Tigor Average Power Consumption - 42 kWh/ Vehicle In winter- 33kWh/ Vehicle	Models- Bolero (220/ Shift) Average Power Consumption – 21 kWh/ Vehicle	Production- 590 Average Power Consumption- 13.6 kWh/ Vehicle	Models- Swift Average Power Consumption – 09kWh/ Vehicle

Assembly shop specific is better than Mahindra and TML Sanand but chasing to achieve Maruti benchmark

TML Pantnagar achieved National Benchmark level in power and is the best performing plant among TML plants.

© Copyright, Confidential, Tata Motors Limited

Process Benchmarking (CII Certified best in Energy Efficiency across Industries)

CERTIFICATION

TML Pantnagar is the first plant across TML to be certified Platinum+ in GreenCo by CII, where we have been judged the best in Energy Efficiency across industries.

© Copyright, Confidential, Tata Motors Limited

2

6

Digitization Drive: Industry 4.0 for real time monitoring of Power, Fuel, Compressed Air and water consumption in all plant areas except Paint Shop (Paint Shop already covered in FY 23)

Finch fuel Catalyst in Paint Shop Fuel Lines for efficiency improvement

Major Projects impacting plant energy performance and achieving Net-Zero targets 3 Sealer Oven complete elimination from Paint Shop Process (Introduction of ambient temperature baking sealer)

4 Heat Pump utilization for both Hot Water Generation and ASU in Paint Shop (Scope-1 reduction)

5 Usage of Thin Film, Sludge free Phosphating technology in PT tank (Reduction in both power and Fuel)

Hydroxy Generator for Propane burning optimization

Usage of Green H2 in place of Propane for Scope-1 reduction

MHEN

Key EnCon Projects FY 2022-23

Sr. No.	Title of Project		Year	Annual Ele Saving in Mil	ctrical lion KWh	Annual savings in Million kCal due to fuel savings	Annual CO ₂ Reduction in tCO ₂ e
1	Reduction of fire hydrant pump start per day from 48 times to 4 times.	الم		un artuic ar			0.7
2	Replacement of Conventional lights by LED lights	lae	a given by St	ipervisor			0.9
3	Pressure scheduling in Paint Shop by installing IFC unit	Ide	ea given by C)perator			2.2
4	Dampers in duct of BIW 1B,1C		2022-23	0.005			0.4
5	Reduction of Booster Compressor running by PLC upgradation		2022-23	0.010			0.68
6	Use of occupational sensor for Sub-station lighting		2022-23	0.001			0.04
7	Replacement of Conventional lights by LED lights in Non-manufacturing areas		2022-23	0.014			1.01
8	DO based aeration system in ETP		2022-23	0.002			0.11
9	Paint Shop : VFD installation in Paint Shop for Preparation Exhaust blower		2022-23	0.003		7.3375	1.75
10	Paint Shop: Auto isolation valve installation in pneumatic air line		2022-23	0.030			2.13
11	Paint Shop: Oven 2 Temperature reduction by Oven 2 JPH optimization and		2022-23	0.000		155	38.40
12	Paint Shop: Conversion of 2X28 W LED tube light with energy efficient single 30 watt lights - From Aril to ti lights replaced (Horizontal deployment)	ll date 765 tube	2022-23	0.045			3.17
13	Power Train : PID temperature controller in Balancer Gear Pressing		2022-23	0.035			2.49
14	Power Train : Heating Temperature Reduction in Washing Machines		2022-23	0.087			6.19
15	Power Train:VFD for spray pumps in washing machines *2		2022-23	0.035			2.49
16	Power Train:694cc Petrol Engine Stop at any RPM issue resolution		2022-23	0.015			1.07
17	Power Train : Auto shut off valves in Machines		2022-23	0.019			1.35
18	TCF :10 nos 400w high bay lamps to be converted into 70 W LED.		20	0.008			0.60
19	TCF :Gangway side high bay lamps optimization.		8	699 22			
20	TCF: Replacement of faulty Tube lights 2X28 W with 30 W LED lights		0		N	o of Projects=25	Nos
21	TCF :Dock light and gate light will be converted to LED.		+(CO2	Zoro	Investment Idea	uc-15
22	TCF :The High bay lamps on the Rework side are to be converted into LEDs.(Col 6S-9S).				Zert	investment idea	13-13
23	TCF : kitting 2 area 4nos 120W light to be converted into 70W LED light.		red	uction 🦯			0.10
24	TCF :PBS tunnel area lights to be optimization.			0.004			0.31
25	Paint Shop: Low temperature baking by conversion of EF paint from CG500 to CG800		2022-23	0.000		81.6	20.26

Year	No of Energy saving projects	Investments (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million Kcal/ MTOE)	Savings (INR Million)	Impact on SEC (Electrical)	Impact on SEC (Thermal)
FY'21	49	7.17	3.64	1010	9.12	28 kWh/Eq. Veh.	776.9 kCal/Eq. Veh.
FY'22	28	9.34 (30% 💼)	2.88	1814	3.04	18 kWh/Eq. Veh.	1133 kCal/Eq. Veh.
FY'23	25	16.46 (76%	2.62	1548	3.55	15 kWh/Eq.Veh.	2211 kCal/Eq.Veh.

Consistent increase in investment towards energy efficiency and greener technologies showcases our commitment towards a greener tomorrow.

Energy Saving Projects Implementation Trend

TATA MOTORS Connecting Aspirations

© Copyright, Confidential, Tata Motors Limited

- Innovista, Innovision, Innoengine and Hackathon challenge
- Leader's workshop

MOREWHEN

© Copyright, Confidential, Tata Motors Limited

- Suggestions and Kaizens promotion
- Energy conservation month- Best Innovative project award
- In-house Energy Expo (Technology day) & Trainings

EXISTING SYSTEMS/ ACTIVITIES

- FY 19-20: New innovative initiatives
- Six Sigma project for power cost reduction
- Dynamic target setting through statistical analyses
- IT based manpower deployment for energy saving in first Hour output

FY 21 & FY 22: New Innovative Approaches

- SIX SIGMA project for energy performance improvement
- Under strategic & approach related interventions two new levers were added
- Process standardization and horizontal deployment in other business units/ plants through TMOS
 Portal
- SDCA (Standardize- Do- Check and Act) standard development to sustain the gains of last 3 years EnCon projects

FY'22 & FY 23

- Industry 4.0 to improve energy monitoring in energy intensive Shops
- Adoption of new technologies such as smart meters & smart sensors to keep set of energy guzzler equipment in check.
- Adoption of 4-layer architecture for real-time equipment energy monitoring in shops
- As the real-time monitoring project takes off, and we gather enough data, we plan to migrate to an enhanced IOT platform with AI-ML usage for more accurate predictive analysis for energy trends.
- AI-ML and big data analyses for energy saving.

FY 24 & 25

- Industry 4.0 to improve energy monitoring across plant facilities and all energy sources. Usage of AI/ML with existing infrastructure and correlating the energy data with variables will do wonders in Energy Efficiency
- Renewed focus on Net-Zero target by formation of Cross Location teams for Scope-1 and Scope-2 emission reduction as per target
- Adoption of latest products in market such as Heat Pumps, CST etc. to reduce Scope-1 emissions.

OUR CULTURE CREDO

AT TATA MOTORS

We are connecting aspirations by being bold in thought and action, owning every opportunity and challenge, Solving together as one team and engaging all our stakeholders with empathy. We are **MORE WHEN ONE!**

Harnessing Industry 4.0 capabilities to reduce Hot Water Generator Propane Consumption by 125 Kg/day

BE BOLD Taking calculated risk is key to making progress. We act with confidence and agility to accomplish our goals

SOLVE TOGETHER Leveraging our collective genius while holding each other accountable helps us deliver the best. We collaborate proactively and transparently to achieve innovative solutions

OWN IT

Feeling and acting empowered is critical to drive results. We have an Owner's Mind-set and each of us takes full responsibility for the outcomes

BE EMPATHETIC

Embracing diversity makes us stronger for differences are opportunities to learn. We work with passion to delight customers and deliver greater success to our stakeholders

6

Hot Water Generator- Paint Shop

Copyright, Confidential, Tata Motors Limited

Before Condition: Propane consumption of HWG

MOREWHEN

DE BOLD | OWN IT | SOLVE TODETHER | BE EV INTHETO

TATA MOTORS Connecting Aspirations

Average Daily Propane consumption more than 500 Kg/ day before modification

Hot Water Generator(Return Water Temp) Hot Water Generator(Return Water Temp) 🕂 🗖 🔀 👫 🚺 123 Q 🗖 🔀 🖀 13 90 90 MM Hot Water Ge 80 80 õ ô 70 70 65.00 65.00 60 60 40r 18, 06:29 5 40r21, 2053 13:09 14:49 60:80 09:49 00:49 20:49 17:29 ^{76:29} 0.8' 60:80 6:50 0.8¹ 9:49 وح:75 <3:09 Apr 21, 2023, 22:01:3 02:20 60:Þ0 05:49 05:49 Apr 18, 2023, 12:31:48 60:Þ0 Hours Hours

Before HWG Temperature setting at 85 Deg C

After HWG Temperature 75 Deg C

HWG Return Water temperature before improvement

HWG Return Water temperature after improvement

PT line temperature

TATA MOTORS Connecting Aspirations

Process Value before improvement

Process Value after improvement

There is no impact on PT line process tank temperatures.

After Condition: Propane consumption of HWG

OUR CULTURE CREDO

AT TATA MOTORS

We are connecting aspirations by being bold in thought and action, owning every opportunity and challenge, Solving together as one team and engaging all our stakeholders with empathy. We are **MORE WHEN ONE!**

New Technology: Low temperature baking by conversion of ED paint from CG500 to CG800

BE BOLD Taking calculated risk is key to making progress. We act with confidence and agility to accomplish our goals

SOLVE TOGETHER Leveraging our collective genius while holding each other accountable helps us deliver the best. We collaborate proactively and transparently to achieve innovative solutions

OWN IT

Feeling and acting empowered is critical to drive results. We have an Owner's Mind-set and each of us takes full responsibility for the outcomes

BE EMPATHETIC

Embracing diversity makes us stronger for differences are opportunities to learn. We work with passion to delight customers and deliver greater success to our stakeholders

Evolution of CathoGuard® Technology Continuous innovation

6.9

Advantages of New Technology CG 800

• CathoGuard®800 The advanced E-coat for corrosion protection benefits with respect to

Economy	CathoGuard [®] 800 has Hyper Throw power, which minimizes film build dis	tribution maintaining box section film thicknesses resulting in reduced operating costs
Ecology	CathoGuard [®] 800 is tin-free, lead-free, non-HAP coating (acc. USEPA) and	has a low solvent content (low VOC)
Technology	CathoGuard [®] 800 provides improved mapping/chipping performance and CathoGuard [®] 800 is the break-through technology achieving a smooth su	compatibility with new "nano" pretreatments rface with excellent edge protection –ideal for integrated processes
	<section-header> CathoGuard® 800 series High throwing power Low consumption High reactivity Tin/HAPs-free Low solvent content Suitable for integrated processes Compatible with new thin-film pretreatments </section-header>	
	JEE Todonier Bolevistiend	Copyright, Confidential, Tata Motors Limited

TATA MOTORS Connecting Aspirations

6.10

CathoGuard®800 Product Data : Operating Parameters

		CathoGuard 500	CathoGuard 800	Remark
Mix NV (180°C/30min)		41.1	42.1	1 Better
Baking Schedule- EMT	°C	160°C/15min.	160°C/10min	5min lower baking time. ↓Time =↓ fuel consumption ↑Productivity.
Application Voltage For Ace	V	170-220 190-240 280-320	150-200 170-210 260-300	↓ Voltage =↓ electrical energy consumption.
Throw power Nagoya Test(4 box)	%	60	67	Throw power = _ outer DFT, _ consumption. Faster coating Kinetics.
Average Dry Film thickness	μm	17.5	14.6	\mathbf{I} DFT = \mathbf{I} consumption.
Average DFT Calculation	μm	Ext-20μ, Cabin 17μ, Box-10μ	Ext-17μ, Cabin 13μ, Box-10μ	Exterior DFT can be reduced by maintaining same DFT in Box section, as CG800 is High Throw Ecoat.

CathoGuard® 800

Benefit : Consumption

BE BOLD | OWN IT | SOLVE TODETHER, BE EV WITHETIC |

M

CG800 is a Hyper Throw Power Ecoat, having Faster Coating Kinetics, which enables it to reduce External DFT without compromising the Box section DFT

	CG500	CG800
Present DFT	~17.5 µ	
Proposed DFT for CG800		14.6 µ
Consumption Kg/100m ² (Binder + Paste)	5.69 @ 17.6µ	4.72 @ 14.6µ

~15% Reduction in Paint Consumption due to ~15% reduction in Ecoat Average DFT.

CathoGuard® 800

Benefit : Process

		CathoGuard 500	CathoGuard 800	Remark
Baking Temp. EMT	°C / min	160°C/15"	160°/10"	Reduced Baking Time - reduced Fuel consumption & Improved Productivity.
Application Voltages- Ace	V	190-200-300	160-180-280	Reduced Application Voltages - reduced Electrical Energy consumption.
Filter Bags Consumption	Qty	120	108	Data from other lines shows 10% reduction in filter bags consumption due to good resistance against Bacteria. Depends upon line condition & maintenance.
Anolyte Conductivity settings	μS	1200-1800	400-4000	 Wider Anolyte Conductivity window to maintain Bath pH. Reduced acid consumption by~ 50%. Reduced DI water consumption by 5liters / 100m². Experience from other customer lines.
VOC	Lbs./gal	0.58	0.55	Both the Products have VOC <0.6 lbs/gallon.

TATA MOTORS Connecting Aspirations

Innovative Project-3

Upgradation of Flow Control Unit in Compressed Air System

6

Power Consumption Distribution in Compressed Air System

Compressed air is used for process requirements such as operating pneumatic tools & equipment and instrumentation. Air compressors consume a significant amount of energy, with only about 7.5% of the input energy actually being used.

Energy Flow in Compressed Air System

Major Area of Utilisation of Compressed Air Consumption

6.14

Out of 100% Energy Input, Only 15% is used for Compressed Air Generation

From the remaining 15% Energy, only 50% of compressed air used in production i.e 7.5% of total Energy input

Compressed Air System

TATA MOTORS Connecting Aspirations

The FC with pressure scheduling is useful for running the system at desired operation pressure band within the preferred time frame in order to run the compressed air system efficiently by maintaining a stable reduced system pressure.

Using of FC Unit with Pressure Scheduling to increase efficiency

6.16

After upgradation of existing Flow controller unit, we are able to reduce pressure to 4.0 kg/cm2 at desired time intervals as per process requirement against Compressed air pressure @ 5.5Kg/CM2 from Compressor house.

Compressed air pressure is reduced during the night shift and on non-working days, resulting in lower power consumption.

Power Consumption Saving By Upgradation Of FC unit in Paint Shop Compressed Air System

TATA MOTORS Connecting Aspirations

Total Cost Saving Till Feb'23:- INR 1.9 Lakhs in 9 Months

Copyright, Confidential, Tata Motors Limited

6.17

Way Forward- Compatibility with Industry 4.0

TATA MOTORS Connecting Aspirations

With FC ~ 17 % energy saving is achieved in existing compressed air network through reduction in artificial demand.

Along with that, it improves pneumatic equipment performance with constant air pressure within the range of +/- 1 psig (0.07 barg)

Industry 4.0 Compatible features of Upgraded IFC Unit

- ➤ Real Time Monitoring & Remote Access
 - Live View Data & Graph
 - Log Report/Alarm report & & Export to Excel
- ► IFC Parameter Settings & scheduling

After synchronizing with Industry 4.0 savings can be further increased up to 25 %

TATA

Green Light for Clean Energy

RE 100 Signatory

14 July, 2017

As a part of our sustainability approach and vision, Tata Motors has taken an initiative to go 100% renewable. In 2016, Tata Motors joined the REIOO group, a global initiative of the world's most influential businesses that are committed to transforming their energy resources to renewables.

About the RE100 Initiative

REIOD is the intent to transform our operations to 100% renewable. It implies establishing reliable sources for procuring renewable energy and consciously moving away from fossil fuels.

Future Ready Vision

As part of the Tata Group, Tata Motors is also committed to the United Nations' Sustainable Development Goals, Arvind Bodhankar, Corporate Head - Health, Safety, Environment, and Chief Sustainability Officer of Tata Motors, sums up the company's renewable roadmap: "Our approach towards climate change mitigation and pursuing low carbon growth is three-fold - develop cleaner and more efficient vehicles, reduce environmental impacts of manufacturing operations, and build awareness among stakeholders."

Business case for renewables

For Tata Motors, the case for 100% renewable energy is aligned with our sustainability objectives and our endeavor to be Future Ready. Procuring electricity from renewables carries several strong business benefits.

TATA MOTORS

Renewable energy makes complete business sense

C Copyright, Confidential, Tata Motors Limited

TATA MOTORS Connecting Aspirations

Other Renewable Energy Applications

© Copyright, Confidential, Tata Motors Limited

Solar Street Lights: 55 Nos

Solar day light pipe & Dome 46 Nos

Wind ventilators

Waste Utilization And Management

TATA MOTORS Connecting Aspirations

Mile Stone achieved :

© Copyright, Confidential, Tata Motors Limited

- 100 % Elimination of Incineration and Landfill 1)
- 100 % Co-processing of Hazardous waste 2)
- 3) 8.6% increase in recycling of Paint Sludge

5. No	Type of waste	Unit	Waste disposed (FY 22-23)	Disposal Mechanism
1	Paint Sludge	MT	90.14 62.36 (8.6% †)	Co-processing Recycling
2	Waste and Residue	MT	82.02	Co-processing
3	Phosphate Sludge	MT	56.93	Co-processing
4	Chemical Sludge (ETP Sludge)	MT	223.86	Co-processing
5	Waste Coolant	MT	22.12	Co-processing

Recycling of Paint sludge YOY

Copyright, connuential, rata iviotors cinnicu

2018-19

100 %

2022-23 2021-22 100 % 100 %

8.1

© Copyright, Confidential, Tata Motors Limited

GHG Inventorization Management (Scope 1, 2 & 3) at Pantnagar

Scope 1 direct GHG emission which includes Manufacturing and non manufacturing which use the fuel (HSD, CNG, Propane) in the process and vehicle testing and along with vehicle.

- Scope 2 encompasses indirect emissions from generation of purchased electricity, steam, heating and cooling etc.
- □ Scope 3 inventorization , we have collected the data from various agencies for calculated the scope 3 emission :-
- Supply chain team(Material logistics from vendor park)
- Material Logistics from outside of location.
- Admin team-Employee transportation for daily commute.
- Admin team-Employee transportation for Business travel.
- All business trip requests are monitored through Quest2travel portal.

TATA MOTORS

© Copyright, Confidential, Tata Motors Limited

9

© Copyright, Confidential, Tata Motors Limited

9

© Copyright, Confidential, Tata Motors Limited

GHG Intensity of Peers/Competitors

*Source of Information: Integrated Annual Reports

As per available data, TML Pantnagar is ahead of its competitors with in-house Paint Shop

Reduction in Sp. GHG emission (Kg CO2 emission/ 25 SMH based Eq. Vehicle Produced). Public disclosure is done through Annual Sustainability Report at TML

Supplier Scope 3 data collection from inside and outside vendor park is done in a structured manner and the frequency of collection is quarterly

© Copyright, Confidential, Tata Motors Limited

© Copyright, Confidential, Tata Motors Limited

Scope 3 accounts for all other indirect emission that occur such as supply chain, canteen related, employee transportation and business trips. All business trip requests are monitored through Quest2travel portal.

Green Supply Chain Management

TATA MOTORS Connecting Aspirations

© Copyright, Confidential, Tata Motors Limited

Supplier Sustainability Overview:

Tata Motors Supplier Code of Conduct

Education & awareness creation for suppliers:

	Activities in Sustainable Supply Chain Initiative	No of Suppliers	
	Total Suppliers in Vendor Park	72 (66 Active)	N.Y
	No of Supplier Workshop done	46	, Hadens
	Site assessment done	24	
	Supplier's Felicitation	7	
C	Copyright, Confidential, Tata Moto	rs Limited	

Sustainable Procurement Implementation Guideline:

1) Supplier Selection : Manufacturing Site Assessment (MSA)

2) Evaluation of Supplier :

3) Managing Supply Chain : Maximizing Usage of Returnable Packaging
4) Supplier Sustainability : Training and capacity building of suppliers on sustainability

Sequential supplies for vendor park suppliers

Supplier	Commodity	No. of Parts (FY'20)	No of parts (FY'23)	Status
M/s Adient	Front seat	17	23	Done
M/s Mutual	Front Bumper	18	24	Done
M/s D&S	Fuel Tank	2	4	Done
M/s Mitter & Mitter	Steering Wheel	2	6	Done
M/s Syndicate	Silencer	7	12	Done
M/s Mahabal	Front Axle	5	18	Done
M/s Taco	Front Panel	17	21	Done
M/s Spicer	Rear Axle	3	8	Done
M/s Tata Toyo	Radiator	2	6	Done
M/s Jay Suspension	Suspensions	0	10	Done
M/s Mayur	Door Pads	0	12	Done
	Total	73	144	

Green Packaging

TATA MOTORS Connecting Aspirations

Green Packaging (Examples):

TATA MOTORS

Environment Related points in Supplier Selection:

1.3. Does the organization follow EMS standard, environmental statutory and regulatory norms? Does the organization have responsibility defined internally?

1.3a Does the Organization follows statutory and regulatory norms related to IMDS, Conflict of Mineral and Persistent Organic Pollutant (POP) requirements?

Other Initiatives at Supplier End

FY DUE TO SUCCESSFUL IMPLEMENTATION OF MILK-ROUTES AT PUNE, DELHI & CHENNAI ~ 4% Reduced

Corrugated / Foam Packaging to FLC

© Copyright, Confidential, Tata Motors Limited

MOREWHEN

TATA MOTORS Connecting Aspirations

Corrugated box packaging replaced with returnable trolleys for alternators.

10

© Copyright, Confidential, Tata Motors Limited

M

Corrugated box packaging replaced with FLC boxes

Corrugated box packaging replaced with returnable trolleys for dashboards.

Corrugated box packaging replaced with FLC boxes

CNG transportation elimination

Earlier Status: CNG transported from Depots everyday to meet production requirement. The transportation of CNG cost the company RS. 27 Lac and emission of more than **92 tCO2 in Scope-3**

Action Taken: Dedicated PNG line laid from Depot. to the point of use.

Key Measure:-

No additional cost in creation of Infrastructure for PNG (Pipeline +CNG Booster Compressor)

Benefits:-

Reduction of 92 tCO2 emission/year in Scope-3 NG Supply (Elimination of **3Nos. of LCV**

y elimination of transportation:- **INR 27 Lacs/ Year** elimination of unloading CNG vehicle k Content (Unloading Activity, Regular checking of CNG more we ment of Fire team, Safety, SCM & IDM Team)

Tata Motors Ltd. Pantnagar, Uttarakhand Certified with Zero waste to Landfill Certification By TUV India

DE GOLD | OWN IT | SOLVE TODETHER | BE EV STHETIC

- □ Tata Motors Pantnagar is Certified with Zero based to landfill certification based on the recently concluded assessment held during 3rd -4th August 2022.
- □ Tata Motors Pantnagar is first Tata Motor's plant who receive this rating indicating world class benchmark!.
- Zero waste to Landfill means zero manufacturing waste is disposed directly to landfill or to Incineration without energy recovery by the site, except where local legal requirements specify that regulated wastes must be disposed in a landfill".
- The Zero waste to Landfill assessment was done by a team of TUV India representatives comprising of Mr. Manoj Borekar and Vivek Nigam. It comprised of a two-step evaluation process
- □ The 1st step comprised of a pre-assessment & Site Visit and followed by the 2nd Step involving a review of all documentation including review of Process and documents of all our recycler/ Waste Handler.

"At TML Pantnagar, we're leading the charge toward that Healthy, sustainable future with our Zero waste to landfill Plant (ZWtL)"

This Certificate reconfirms our commitment towards Sustainability and the continual participative approach of Team Pantnagar towards our journey for Sustainable Future.

DE GOLD | OWN IT | GOLVE TODETHER | BE EV WITHERD

Tata Motors Ltd. Pantnagar, Uttarakhand Certified with Water Neutrality Certification from CII-GreenCO....

- Tata Motors Pantnagar has received Water Neutrality certification following a recently completed assessment in January- 2023.
- Water neutrality is the state of operations achieved and maintained by an organization by continuously increasing water usage efficiency, augmenting water, and offsetting for any remaining water consumed by making water available for further use beyond its boundary.

"At TML Pantnagar, we're leading the charge toward that healthy, sustainable future with Our Water Neutrality Certification"

This Certificate reconfirms our commitment towards Sustainability and the continual participative approach of Team Pantnagar towards our journey for Sustainable Future.

Tata Motors Ltd. Pantnagar, Uttarakhand Certified with GreenCO Platinum + Certification from CII-GreenCO

GreenCo Rating is the "first of its kind in the World" holistic framework that evaluates companies on the environmental friendliness of their activities using life cycle approach.

- Tata Motors Pantnagar has received GreenCO Platinum+ certification following a recently completed assessment on 4th & 5th July 2023
- The Green Company Rating System advocates a performance based approach. The rating system evaluates green features.
- A team of CII-Green CO Assessor led by Mr. U.K Shenoy & Mr. Rajesh
 Chandra along with Syed Ateeq conducted the GreenCO Platinum
 + requirement assessment. It was a two-step evaluation process.
- The first step included a pre-assessment and site visit, followed by the second step, which included a review of all documentation, including a review of the Process and final judgment made by GreenCO Assessment Committee based on overall review.

"At TML Pantnagar, we're leading the charge toward that healthy, sustainable future with Our GreenCO Platinum + Certification"

This Certificate reconfirms our commitment towards Sustainability and the continual participative approach of Team Pantnagar towards our journey for Sustainable Future.

Tata Motors Ltd. Pantnagar, Uttarakhand Won Gold Award in National Competition on Low Cost Automation (LCA) by CII

- □ Tata Motors Pantnagar has received Gold Award in National Competition on Low Cost Automation (LCA) by CII following a recently completed assessment on 6th & 7th July 2023
- □ The Confederation of Indian Industry (CII) works to create and sustain an environment conducive to the development of India, partnering Industry, Government and civil society, through advisory and consultative processes..
- A team of CII Judges evaluate the idea. It was a two-step evaluation process.
- □ The first step included a evaluation of Low Cost Automation (LCA) ideas generated and the second step included presentation and explanation of the idea to the Jury.

"At TML Pantnagar, we're leading the charge toward that advanced automated future"

This Certificate reconfirms our commitment towards Creativity and the continual participative approach of Team Pantnagar towards our journey for Future Innovations.

Tata Motors Limited, Pantnagar believes in achieving Energy Efficiency through Operational Excellence and Low Cost Automations with a numerous small innovations leading us to achieve our Energy as well as Climate goals.

Implementation of ISO 50001/Green Co/IGBC rating

TATA MOTORS Connecting Aspirations

CII GreenCo- Platinum Plus Rated factory in 2023, (Upgraded from Platinum rating in 2023)

C Copyright, Confidential, Tata Motors Limited

© Copyright, Confidential, Tata Motors Limited

MC

Daily Energy Monitoring

Compressed air leakage monthly audit

Trainings Mechanisms On Energy Management :

S N	Description	Frequency
1	Energy management system – ISO 50001 training through HR	Monthly
2	Participation in external trainings	Need based
3	Participation in Award functions and expositions	Frequent- need based
4	Online training through Tata motors academy	Online – always available
5	Participation in 30 Nos events in Energy conservation months	30 -35 days in a year
6	Energy Nuggets – through email	30 - 40 mailer

© Copyright, Confidential, Tata Motors Limited

2 Nos employees trained as Lead auditor and 17 employees trained as Internal Auditor in ISO 50001:2018. These are certified Auditors to conduct energy audits.

Online suggestion portal

 Average 55000 suggestions per year Monitory reward – Rs 200 – Rs 5000 Special suggestions schemes

Kaizen Promotion Cell Monthly Area Wise Kaizen Tracking

KAIZEN IMPLEMENTATION SUMMARY REPORT														
Sr.No.	Department/Area	Apr'19	May'19	Jun'19	July'19	Aug'19	Sep'19	Oct'19	Nov'19	Dec'19	Jan'20	Feb'20	Mar'20	Cumm. Total
1	AQ	0	0	0	0	0	0	0	0	0	0	0	0	0
2	BIW 1A	238	283	76	0	0	0	48	0	0	122	122	90	979
3	BIW 1B	145	152	199	189	212	231	205	203		192	301	200	2432
4	BIW 1C	12	53	35	35	46	36	28	38	72	39	15	24	394
5	Frame	20	41	29	32	19	32	14	E	19	18	0	0	205
6	CMS	3	3	36	0	2	2		2	2	50	11	12	127
7	CPED	0	0	0	0	0		0	0	0	0	38	28	61
8	СКD	5	0	0	0	.0	9)	0	0	0	0	0	0	5
9	CKD Quality	0	0	0	.0	10	0	0	0	0	0	0	0	0
10	Powertrain	23	17	17	AVE	3	21	20	38	22	30	10	36	254
11	Paint Shop	182	174	-	210	169	173	159		117	180	120	155	1909
12	SQIG	0	62	0	0	0	0	0	Total	0	0	0	0	0
13	TCF 1A	0	20	53	49	75	0	25	Kaizen	0	150	100	80	586
14	TCF 1B	118	27	26	85	127	64	110	10036	~	236	175	220	1427
15	TCF 1C	110	110	140	110	109	119	132	135	136	167	167	180	1616
16	TCF 1D	0	0	0	0	0	0	0	0	0	U	0	0	0
17	Scrap yard	0	0	0	0	0	0	0	0	0	0		0	0
18	Export Cell	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total	857	880	787	727	762	678	745	592	745	1184	1054	1025	10036

Suggestions generated in Unique EnCon suggestion scheme

TATA MOTORS Connecting Aspirations

© Copyright, Confidential, Tata Motors Limited

© Copyright, Confidential, Tata Motors Limited

Workshops at three levels

Plant Level & Cross location workshop Factory Level Line/ station level TL and Operators

Numerican Notes Notes<</th> Notes Notes Notes

DE BOLD | OWN IT | SOLVE TODETHER | BE EV WITHERD

TATA MOTORS

- Picked up heat pump project for Powertrain and Paint shops, IFC for Compressed Air system and FFC for fuel optimization
- Picked up HVLS fans project for our Frame shop and TCF shops
- Learned about heat recovery system and interaction with suppliers for the same
- Interacted with many suppliers from energy sector
- Learned best practices from other automobile companies

• Increased the % dependence on RE sources (such as Solar Power, Green Power Purchase)

6

<u>Target Setting –short term & Long term targets</u> <u>Science-based Target approach for GHG reduction</u>

© Copyright, Confidential, Tata Motors Limited

Science-based targets show companies how much and how quickly they need to reduce their greenhouse gas (GHG) emissions to prevent the worst effects of climate change. Targets are considered 'science-based' if they are in line with what the latest climate science deems necessary to meet the goals of the Paris Agreement – limiting global warming to well-below 2°C above pre-industrial levels and pursuing efforts to limit warming to 1.5°C. We used SBTi tool to target our GHG emission level. SBTi defines and promotes best practice in science-based target setting. Offering a range of target-setting resources and guidance, the SBTi independently assesses and approves companies' targets in line with its strict criteria.

We are committed to demonstrating that creating a climate-secure world goes hand-in-hand with successful business operation. Below is the snapshot of the target setting window on *scienbasedtarget.org*

SCIENCE BASED TARGETS Science-based target setting - Manufacturing of passenger light-duty vehicles (Scopes 1 & 2) Version 1.0 Reserved rot vehicles (Scopes 1 & 2) Reserved rot vehicles (Scopes 1 & 2)	Carbon intensity (B2DS) Scope 1	Carbon intensity (B2DS) Scope 2	Carbon intensity (B2DS) Scopes 1 & Scope 2
Please fill in all orange cells below to model a target Sector / Industry: Vehicle manufacturing (PLDV) Section 1. Enter target details	6,000.00	25,000.00	30,000.00 25,000.00
Select a base year 2018 Any base year between 2012 and the current year is eligible Select a target year 2025 Any target year after the base year and up to 2050 is eligible Activity in base year 201,078 units sold		I I	
Expected activity in target year 2,79,765 units and Scope 1 carbon intensity in base year 33.30 #C022/ethicle Scope 2 carbon intensity in base year 143.36 #C022/ethicle	2,000.00	10,000.00 5,000.00	10,000.00
Sector information 2018 - 2025 Sector growth rate - B2DS (units sold) 0.57%	1,000.00		5,000.00 0.00 2010 2020 2030 2040 2050
Sectoral Decarbonization Approach Sectoral Decarbonization Approach Target year 2018 Target year 2018 % Reduction 2018 Vehicle manufacturing (PLDV) Scope 1 cation intensity kgC02/vehicle 33.30 56.67 (Ør.19%) Scope 1 & Scope 2 cation intensity kgC02/vehicle 143.36 66.63 52.13% Scope 1 & Scope 2 cation intensity kgC02/vehicle 176.66 126.94 28.14%	2010 2020 2030 2040 2050 — Company S1 carbon intensity Sector S1 carbon intensity S1 target	Company S2 carbon intensity Sector S2 carbon intensity S2 target	Company S1&S2 carbon intensity Sector S1&S2 carbon intensity S1&S2 target

GHG Intensity 5 Year Glide Path – UTK till FY 2024-25 as per SBTI Tool

BE BOLD [OWN IT] SOLVE TODETHER, BE EVENTHETIC

© Copyright, Co

2.90 2.93 2.96 FY2023 GHG Reduction Activities 70000 3.00 2.85 2.80 2.80 Additional 01 MWp installed. Total solar 7 MWp **Prod Vol** Industry 4.0 in Paint Shop and other shops in Lacs 60000 Transition of CED paint from CG500 to CG800 2.50 2.3 Installation of IFC at Paint Shop Compressor 13379 13379 Offset due DO based Automatic Aeration system 13379 50000 11181 13379 to Solar 1.93 VFD for ETP 2.00 Power VFD 30kw*2 for booth-1 preparation zone 1.64 Green power tCO2e RO & ETP Final Outlet Tank working in Sunday & 40000 GHG 1.51 Holiday (around 3386 KWh saving in August'21, 1.50 emissions projected Saving around 32836 KWh i.e around **288**68 28868 28868<mark>1755</mark> 30000 32847 32230 21 tCO2). 30535 31963 31306 3176 Scope 2 9765 Conducting Monthly Compressed Air Leakage 26335 1.00 Audit 23435 20000 515 AC, Street light and AHU timing Change 9640 S Charging of TCF-1D shop from TCF-1C instead of 0.50 10000 Main line:- To reduce compressed air leakage as 11150 10778 10890 10592 11001 10407 10407 Scope 1 well line loss-:- 50Kwh/Day. 8598 6095 4853 96 717 4 0.00 n FY'31 FY'21 FY'22 FY'23 FY'24 FY'25 FY'26 FY'27 FY'28 FY'29 FY'30 FY'20 RE (Capex +Opex) 7 3 1755 6303 9312 11181 13379 13379 13379 13379 13379 13379 Scope 2 tCO2e (after RE adjustmen)(Capex+Opex) 24072 29765 31768 32230 32847 19640 23515 23435 26335 31963 30535 31306 Scope 1 tCO2e 4796 4853 7173 8598 10407 10592 10778 10890 11001 11150 6095 10407 Target (Alingana) 28868 28868 28868 28868 28868 28868 28868 28868 28868 28868 21651 21651 Production Volumes(Lakh Units) 1.51 1.31 1.64 1.93 2.31 2.80 2.80 2.85 2.90 2.93 2.96 3.00

12.3

Actions towards Net Zero Plan

TATA MOTORS

Connecting Aspirations

Glimpses :Utilities (Scope-1 & 2) CLT Strategy Workshop on 23rd May @Pantnagar Plant

LKO

UTK

UTK

			Team	Team 1		
Utilities CLT Sri		th Sharma	Adil Bala	PNA		
Champion			Sudhir Kadam		DWD	
SME	Chinmoy Roy		Gaurav Bansal		LKO	
614F	Subhendu		Ravindra Joshi		UTK	
SIVIE	Ν	/londal	Ajay Jain		UTK	
			Yatish rajput		UTK	
Te	am 2			-		
Deepak Kumar JSR			Team 3			
Rajeev Bhara	dwaj	UTK	Sanjay Waghchaure		UTK	
Sachin Kastu	ire	PNA	Dilip Patel		LKO	
Amrendra Si	ngh	UTK	Vivek Deshpande		PNA	
Samarendra F	atro	UTK	Anil Khan		UTK	
Sudhakar Kumar UTK			Brijesh Sharma		UTK	
Team 4			Team 5			
Iliyas Ahm	ed	UTK	Mohan Gururar	ni	UTK	
Vipin Jai	n	UTK	Yash Singh		UTK	
Ravi Shari	na	DWD	Randhir Prasad	1	JSR	

CLT Utilities Workshop Workflow 3 2 Highlights **Finalization of** Strategy Brainstorming of Context Strategic Development-Key on TGR and locational setting considerations and Challenges (Current **Utilities CLT** TGW Strategic priorities and Future) Workshop 7 3X3 Matrix of **Report consolidation Five Year Roadmap Development of** Action Plan \Box of action plans for action Plans for of Finalized discussion at (Impact & Ease of **Priorities** Priorities respective plants Implementation)

Key highlights of CLT Strategy Workshop

Summary

Ramit Dutt

Devesh Pant

Kapil Sharma

1. 30 members participated from 5 plants (DWD team joined virtually)

Dhiraj Wadhwa

Rakesh K Singh

Ashish Agrawal

2. 67 ideas generated from 9 levers

JSR

UTK

UTK

- 3. 62 impact ideas identified based on 3X3 matrix
- 4. Step by step development of strategy for 5 years based on past learnings (TGR/TGW) , challenges and advantages (Current & Future), Strategic Priorities and Considerations.
- 5. Prioritization of ideas based on Impact and Ease of implementation
- 6. Session on innovative and efficient Solar Heat/Evaporators by a Startup –The Quadsun
- 7. Integration with KT02 initiative

Sr.No.	Key Ideas Examples
1	Hydroxy generator introduction in Ovens to reduce fuel consumption by 10% across all plants
2	Sealer Oven elimination from paint shop process
3	Rework and Emission lab work planning on non working days to use deemed Solar Power generation
4	Room temperature phosphating introduction
5	Use of Analytics , AI & ML for predictive decision making. (KT02)
6.	Waste heat recovery projects in Paint Shop

Idea Break-up	No of ideas
Impact, Ease (High, High)	22
Impact. Ease (High , Medium)	21
Impact , Ease (Medium, High)	19
Total	62

Roadmap for Year wise Priorities								
Levers	2023-24	2024-25	2025-26	2026-27	2027-28			
Measurement & Analysis	1. Real time equipment monitoring for Power Train 2. Al & ML and other projects based on insights from Real Time Equipment monitoring in Paint Shop	1. Real time equipment monitoring for other high consuming areas 2. Al & ML and other projects based on insights from Real Time Equipment monitoring in Paint Shop & Power Train	 AI & ML and other projects based on insights from Real Time Equipment monitoring in entire CVBU Level 	 Sustenance of actions and realized savings. 	 Sustenance of actions and realized savings. 			
Operational Efficiency	I.Energy Efficient equipment procurement for new facility and projects. Replacement of IE2 motors/Significant load) with IE4 motors in 24x7 running process. S. Shift optimization	1.Energy Efficient equipment procurement for new facility and projects. 2.Replacement of IE2 motors(Significan load) with IE4 motors running in 2 shifts/seasonal	1.Energy Efficient equipment procurement for new facility and projects. 2.Replacement of IE2 motors(Significant load) with IE4 motors running in 2 shifts/seasonal.	1.Energy Efficient equipment procurement for new facility and projects. 2.Replacement of IE2 motors(Non- Significant load) with IE4 motors.	1.Energy Efficient equipment procurement for new facility and projects. 2.Replacement of IE2 motors(Non- Significant load) with IE4 motors.			
New technology introduction	1. Adoption of alternate energy source for process heating as POC in Paint shop(Heat Pump, Solar Thermal energy)	 Based on ROI adoption of alternate energy source in heating applications{ Heat Pump, Solar energy} in other areas 	 Based on ROI adoption of alternate energy source in heating applications(Heat Pump, Solar energy) in all over the plant. 	 Based on ROI adoption of alternate energy source in heating applications(Heat Pump, Solar energy) in all over the plant. 	 Based on ROI adoption of alternate energy source in heating applications Heat Pump, Solar energy) in all over th plant. 			
Renewable energy	1. Increase in on-site RE installation capacity	 Increase in on-site RE installation capacity. Utilization of RE power during off peak hour. 	 Increase in on-site RE installation capacity. Utilization of RE power during off peak hour. 	 Increase in on-site RE installation capacity. Utilization of RE power during off peak hour. 	 Increase in on-site RE installation capacity. Utilization of RE power during off peak hour. 			
Benchmarking	 Participation in external platforms. Cross locational/business workshop on utility cost. Benchmarking Exercise by third party consultants. (KPMG, E&Y, Nielsen etc.) 	 Participation in external platforms. Cross locational/business workshop on utility cost. Action Planning based On Benchmarking recommendations. 	1.Participation in external platforms. 2.Cross locational/business workshop on utility cost.	1.Participation in external platforms. 2.Cross locational/business workshop on utility cost.	 Participation in external platforms. Cross locational/business workshop on utility cost. 			
Energy cost	LUBItation of solar energy during off days (Rec OOP lab, charging of EVs., Forklifts, tuggers, ETP RO operations etc.). 2. Quick adoption of chapper power option, Open access. 3.Export of RE power (Subject to Statutory clearance). 4. RE power banking for night hours	L Utilization of solar energy during off days (like COP lab, charging of EVs., Forklifts, tuggers, ETP RO operations etc.). 2. Quick adoption of cheaper power option, Open access. 3. Export of RE power (Subject to Statutory clearance). 4. RE power banking for night hours	1. Utilization of solar energy during off days (ke: COP lab, charging of EVs, Forkiffs, tuggers, ETP RO operations etc.). 2. Quick adoption of cheaper power option, Dpen access. Jearanco, RE power (Subject to Statutory Jearanco, 4. RE power banking for night hours	1.Utilization of solar energy during off days (like COP lab, charging of EVs, Forkiffts, tuggers, ETP RO operations etc.). 2. Quick adoption of cheaper power option, Open access. 3.Export of RE power (Subject to Statutory clearance). 4. RE power banking for night hours	LUTILization of solar energy during off days (like COP lab, charging of EVs, Forklifts, tuggers, ETP RO operations etc.). 2. Quick adoption of cheaper power option, Open access. 3. Export of RE power (Subject to Statutory clearance). 4. RE power banking for night hours			
Knowledge & Capability building	 Participation in external platforms. Organizing training on Energy efficiency and technologies 	1.Participation in external platforms. 2. Organizing training on Energy efficiency and technologies	 Participation in external platforms. Organizing training on Energy efficiency and technologies 	 Participation in external platforms. Organizing training on Energy efficiency and technologies 	 Participation in external platforms. Organizing training on Energy efficiency and technologies 			
Fixed cost reduction Standardization	1.Elimination of rework. 2.Phasewise contractual demand optimization	1.Elimination of rework. 2.Phasewise contractual demand optimization	1)Phasewise contractual demand optimization					
Digitalization (KT 02) and process automation (KT 04)	KT2 implementation Based on plant energy consumption priority	KT2 implementation Based on plant energy consumption priority	Integrate process variables affecting energy consumption on to line dashboard.	AI/ML based predictive modelling	Maturity of AI/ML based predictive modelling .			

Outcome of the Workshop: 5 Years Draft Strategies

Awards & Accolades

Golden

Peacock

Award in

Energy

2018

Green-Co Platinum Rating 2018 CII National Energy

Leader Award 17-18 Award 2018 Excellent Energy

2018

Project

CII National

Management

Award 16-17

Efficient Unit

Excellent Energy

2017

Energy

Golden

Peacock

Environment

Aanagement

2016

award 2016

EfficientUnit

Winner of overall SHE performance at TML Group level (CV)

CII National Award Efficiency for Excellence in Energy Management 2019

> 1st Runner-up - 6th **CII NR EHS Competition 2019**

2019

Tata **Motors** Ltd. Pantnagar, Uttarakhand declared as Winner in 8th CII Northern Region Inter Industry Competition on EHS - 2021

2020

CII 1" Runner The 2 This is to schnowledg

TML Pantnagar Plant GreenCO wins Star Performer Award 2020

2nd Runner up in 7th CII -Northern Region EHS **Competition 2020**

CII National Award for Excellence in Energy Management 2020

2021

Tata Motors Ltd. Pantnagar, **Uttarakhand** declared as National **Energy** Leader 2022 for the 5th time in a row Tata Motors Ltd. •

Pantnagar, Uttarakhand declared as **Excellent Energy** Efficient Unit 2022 for the 7th time in a row

2022

Motors Tata Ltd. Pantnagar, **Uttarakhand Certified** with GreenCo **Platinum+** by CII Tata **Motors** Ltd.

TATA MOTORS

Connecting Acoust

Pantnagar, certified with ZWtL by TUV and Water Neutral organization by CII this year

2023

DE BOLD | OWN IT | SOLVE TODETHER | BE EV WITHERD

Golden Peacock

Environment

Management

award 2015

Green CO Gold

2015

rating 2015

Copyright, Confidential, Tata Motors Limited

2020

Thank You

We heart fully thank CII for :

- Giving us wonderful platform to learn and share our best practices
- We have picked up many project from CII platforms benchmarking data
- Giving us wonderful standards such as GreenCo and Green Building

